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Automated facial age estimation has drawn increasing attention in recent years. Several applications
relevant to digital forensic investigations include the identification of victims, suspects and missing
children, and the decrease of investigators’ exposure to psychologically impacting material. Nevertheless,
due to the lack of accurately labelled age datasets, particularly for the underage age range, sufficient
performance accuracy remains a major challenge in the field of age estimation. To address the problem, a
novel regression-based model was created, Vec2UAge. FaceNet embeddings were extracted and used as
feature vectors to train the model from the VisAGe and Selfie-FV datasets. A balanced, unbiased dataset
was created for testing and validation. Data augmentation techniques were evaluated to further be used
to expand the training dataset. The learning rate (lr) is one of the most important hyper-parameters for
deep neural networks; a cyclic learning rate approach was used to find the optimal initial value for lr and
the performance was evaluated. The distribution of model performance was presented per optimiser and
one of the winning models with a Stochastic Weight Averaging (SWA) optimised training run reached a
mean absolute error rate as low as 2.36 years. Additionally, the time of convergence using SWA was
significantly faster than other optimisers evaluated, i.e., ADAGRAD, ADAM and Stochastic Gradient
Descent. The evaluation model metric is presented in a form of a distribution rather than a single value,
giving more insights into the effects of the random initialisations, optimisers and the learning rate on the
outcome.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Facial recognition is a well-known topic studied across several
fields. The race to obtain a highly accurate tool to recognise, verify
and cluster similar faces is a common task within the topic of
computer vision. The deluge of facial photographs on the cloud has
allowed the creation of robust facial recognition systems. Never-
theless, labels for soft biometric traits such as age, gender, ethnicity,
height, weight, eye colour, marks, etc. are scarce. While the
consideration of these traits are able to improve the accuracy of a
biometric system (Jain et al., 2004), there are few datasets that
contain such information accurately annotated. Age is a cue for face
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verification and facial recognition widely used in forensics. Auto-
mated age prediction could be valuable as an aid to live and post-
mortem triage of collected evidence, while assisting alleviate dig-
ital forensics backlogs that have become commonplace throughout
the world (Scanlon, 2016). Age prediction can also assist in the
identification of victims or suspects in CCTV footage, photographs,
or child sexual exploitation material (CSEM). Moreover, Generative
Adversarial Networks (GANs) are able to estimate images of victims
by creating aged versions from an input image (Du et al., 1450).

Age estimation models rely on good quality images with the
relevant age labels. Nonetheless, accurate age annotations in facial
datasets are also inadequate; certain age groups have few samples
e particularly the underage age range. Datasets for this age range
are difficult to find due to legal restrictions and ethical implications.

The IMDB-WIKI dataset (Rothe et al., 2018) and Adience dataset
(Anda et al., 2018) are amongst the most popular datasets for facial
age estimation. The former is a large dataset of over 500k images
that have automatic labels based on crawled age information. The
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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latter is a Flickr dataset of over 26k images that have been labelled
by humans, categorised in several age groups. Both labelling tech-
niques have produced models with performance challenges that
limit their usefulness for digital forensic investigations, as evidence
based on their outputs would be unlikely to stand up in the
courtroom.

For this research, two datasets were selected and FaceNet facial
embeddings were calculated for each image. FaceNet learns map-
pings directly from facial images to a compact Euclidean space
(Schroff et al., 2015). These facial embeddings were used in this
work as feature vectors in the input of a four layered neural
network. The first dataset is a recently-released underage dataset
named VisAGe (Anda et al., 2020a). This dataset focuses on un-
derage subjects and has accurate age and gender labels assigned by
consensus among human annotators. The images were pre-
processed and the feature vectors were computed. The second
dataset is Selfie-FV (Dixon, 2020), which contains calculated Face-
Net facial vectors and accurate age for female subjects ranging from
8 to 38 years old. The facial vectors were merged excluding adult
images, and later relevant data augmentation techniques were
applied (only on the training dataset). The image-augmentation
facial vectors were also computed and compared with the orig-
inal image for their consideration. In the making of the machine
learning dataset for age estimation of minors, a balanced unbiased
collection of accurately labelled faces was gathered for the whole
age range of underage subjects including 18 year-olds (1e18). This
subset contains 5000 images evenly distributed within the
different age bins and is ideal for testing and validating an underage
age estimation model based on facial vectors.

Several optimisers were tested such as Adaptive Moment Esti-
mation (ADAM), Adaptive Gradient Algorithm (ADAGRAD), Sto-
chastic Gradient Descent (SGD) and Stochastic Weight Averaging
(SWA). A simple regression network was configured rather than
treating the problem as a classification task, in order to fully exploit
the accuracy of the age labels. Finally, 20 models were trained with
each optimiser (a total of 80 models). Each model corresponds to a
setting with a different optimiser and random initialisation. It was
observed that random initialisation has a strong influence on the
final quality. SWA's ability to converge rapidly was also replicated.

In this paper, a model for underage age estimation based on
facial embeddings is presented. The paper is organised as follows.
In Section 2, an overview of the related work is presented. Section 3
provides an overview of the design and methodology of the
developed model and its derivation from the VisAGe and Selfie-FV
datasets. Section 4 describes the performance of the several
Vec2UAge models. Section 5 provides a discussion of the research.
Finally, the last section 6 outlines the conclusions and discusses
future work.

Contribution of this work

� Implementation of face embeddings as input vectors in a neural
network to tackle an underage age estimation problem as
regression.

� Evaluation and application of data augmentation guidelines to
improve underage age estimation performance and obtain a
robust model.

� State-of-the-Art models with an average performance in Mean
Absolute Error (MAE) of 2.5 years in test and awinning model of
2.36 years.

� Balanced underage facial vector dataset for training and testing,
and open code for the experiments available at https://github.
com/4ND4/Vec2UAge.
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� Usage of Stochastic Weight Averaging (SWA) to improve
generalisation and further obtain results faster for underage age
estimation.

� Comprehensive evaluation of random initialisations, optimisers
and initial learning rates to obtain the best performing models.

2. Related work

2.1. Previous work on facial age estimation

Geng et al. reiterate the lack of sufficient and complete training
data (Geng et al., 2013); however, the authors exploit the fact that
close ages look quite similar. Instead of labelling with a single age, a
label distribution is considered. Smaller datasets than the ones
mentioned in Section 1 were used: FG-NET, which is an ageing
dataset of 1002 subjects (Lanitis et al., 2002), and MORPH, which is
a larger dataset of over 55k images (Ricanek and Tesafaye, 2006).
The best performing results in terms of MAE oscillate between 4.76
and 8.06 years, The MAE in different age ranges was also evaluated
in the FG-NET dataset; the best performance lies on the age range
0e9 (2.30 years) followed by the age range 10e19 (3.83 years).

Chao et al. (2013) aimed to overcome the data imbalance
problem. An imbalance treatment is introduced to the training
phase and the connections between facial features and age labels
by combining distance metric adjustment and dimensionality
reduction, are explored. Performance evaluated on the most
widely-used FG-NET ageing database produced MAEs ranging from
3.06 to 3.10 years for ages less than 30. The MAE in different age
ranges were also evaluated with the aforementioned database; the
best performance lies within the age range 0e9 (1.911 years) fol-
lowed by the age range 10e19 (3.52 years) with the C-lsLPP algo-
rithm approach.

In 2017, Liu et al. presented a Group-aware deep feature learning
approach that consists in learning a discriminative feature
descriptor per image of the raw pixels for face representation (Liu
et al., 2017). The main motivation is that age labels are chrono-
logically correlated and face ageing datasets lack labelled data in
certain groups. The datasets used were FG-NET, MORPH and the
Chalearn Challenge dataset (Escalera et al., 2015). The corre-
sponding MAEs are 3.93, 3.25 and 4.21 years respectively.

2.2. Underage facial age estimation

Age estimation classification models tend to perform better
when the age bins have been grouped; hence the number of classes
decreased. The penalisation for wrong classifications are less se-
vere; similar to the effect of using a regression-based model
compared to a multi-class classification model. Furthermore,
limiting the size of the evaluated age range to underage subjects
can potentially create an easier problem for age estimation. If the
complexity of the problem is gradually increased, this is known as
curriculum learningwhere the speed of convergence of the training
process is increased (Bengio et al., 2009).

Research on underage age estimation has been studied in the
past, but only recently has there been work accomplished on
automated underage facial age estimation. In 2016, Antipov et al.
documented their winning approach for the ChaLearn LAP
competition on apparent age estimation (Antipov et al., 2016).
Since the major challenge was the age estimation of children, the
authors created a separate VGG16 model for minors from 0 to 12
years old and integrated the model to the final solution.

In 2019, Anda et al. attempted to ameliorate the accuracy of
underage facial age estimation within the adulthood borderline
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with ensemble learning (Anda et al., 2019). A deep learning model,
DS13K, was developed that was fine-tuned on DEX (a well-known
age estimation model that was pre-trained on ImageNet for im-
age classification (Rothe et al., 2018)). An improvement was ach-
ieved on the age range from 17 to 18 year-old subjects being a key
group in the detection of CSEM.

Later in 2020, a ResNet50-based deep learning model, DeepU-
Age, was developed, which addressed underage age predictions
(Anda et al., 2020a). The model was trained on VisAGe,1 an un-
derage dataset. A novel pre-processing technique based on the Dlib
Contour Artistic approach was implemented. The approach ach-
ieved a MAE of 2.73 years and outperformed state-of-the-art cloud
based services, such as Amazon Rekognition and Microsoft Azure
Face API for the underage age bracket.

2.3. Facial vectors and soft biometric traits

Schroff et al. (2015) proposed a system that learnsmapping from
facial images where the distance between the vectors produced are
able to determine facial recognition, verification and clustering of
similar images. The output creates embeddings of 128 dimensions
per face but currently 512 dimensions are supported. Face em-
beddings refers to the facial features that can be extracted from a
facial image. Once processed, the problem becomes a k-Nearest
Neighbour (k-NN) classification problem.

Leveraging facial vector embeddings for trait related research
such as age, gender, emotions and attractiveness has only been
exploited in the past two years. In 2018, Jekel and Haftka used a
logistic regression and a Support Vector Machine (SVM) approach
to automatically review online dating profiles based on the user's
historical preferences (Jekel and Haftka, 2018). The authors dis-
cussed a possibility of the FaceNet vectors being related to attrac-
tiveness. This research was one of the first using FaceNet facial
embeddings for tasks other than facial recognition.

Later in 2019, Terh€orst et al. proposed amulti-algorithmic fusion
for age and gender estimation based on stochastic forward passes
through a dropout-reduced neural network ensemble (Terh€orst
et al., 2019). Their approach was benchmarked on the Adience
dataset (Eidinger et al., 2014), and achieved an age estimation ac-
curacy of (64.6 ± 2.8)%.

Recently in 2020, Swaminathan et al. developed a method to
predict gender based on several machine learning classification
techniques on facial embeddings. Logistic regression, SVM, k-NN,
Naive-Bayes and Decision Trees where evaluated on the UTK Face
Dataset (Zhang et al., 2017) and the best performer, k-NN, achieved
an accuracy of 97%. In the same year, facial embeddings and facial
landmark points for the detection of academic emotions such as
engagement, frustration, confusion and boredom, were studied by
Leong (2020). The author evaluated the use of deep learning on
FaceNet embeddings and facial landmark points and hypothesised
that the facial embeddings may similarly offer valuable information
for the detection of emotions. A Long Short Term Memory (LSTM)
network architecture was used and the accuracy to detect both
boredom and frustration was 52.15 and 70.67% respectively.

2.4. Data augmentation for facial images

Image augmentation for facial recognition has been studied in
the past and has recently become increasingly popular. Data
augmentation can improve the performance of machine learning
models and convert bounded datasets into exploitable big data
1 VisAGe: Visual Age and Gender Dataset available at https://www.
forensicsandsecurity.com/visage.
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(Shorten and Khoshgoftaar, 2019). Lv et al. proposed 5 data
augmentation methods: landmark hairstyle, glasses, poses, and
illumination manipulations. The approach enlarges the training
dataset, which aids the impacts of misalignment, pose variance,
illumination and occlusion (Lv et al., 2017). For facial age estima-
tion, data augmentation was proposed by Liu et al. (2020). Their
augmentation approach consisted in the application of geometric
and photometric transformations such as flipping, rotating, scaling,
and noise addition. The method aids overfitting, enhances the
robustness of the model and improves the accuracy of age esti-
mation (Liu et al., 2020).
3. Methodology

In applying machine learning to the problem of estimating the
age of a subject from an image of their face, as with many machine
learning problems, the size and quality of available datasets has
been a limiting factor. However, work on facial recognition has
resulted in very large public datasets, featuring thousands of faces,
such as those by Huang et al. (2007), Rothe et al. (2018) and Anda
et al. (2018), and large deep convolutional networks capable of
producing high-quality embeddings, enabling reliable facial
recognition. While an ideal facial recognitionmodel would produce
representations that are invariant with respect to age, Huang et al.
(2007) hypothesised that sampling biases in popular datasets, such
as the Labeled Faces in theWild (LFW) dataset, would leadmodels to
use age as a recognition cue. Although datasets like LFW are built
from images of celebrities that feature a wide span of ages, many
subjects will be featured during a comparatively narrow span of
their lives, as can be seen in Fig. 1. This histogram was constructed
from the IMDB-WIKI 500k dataset (Rothe et al., 2018) by calculating
a ‘‘fame span’’ for each celebrity minus the difference in years be-
tween the dates of their first and last photographs. As shown in
Fig. 1, ‘‘fame span’’ is usually 10 years or less, making age a useful
clue to identify most faces.

This would make these embeddings (with far lower dimen-
sionality than the input images) a better representation for an age
estimation model, which would otherwise be attempting to learn
both the structure of a human face and its ageing trajectory from a
comparatively smaller dataset, such as the one proposed in Section
3.3.
3.1. FaceNet

Face embeddings are high-grade features extracted usually from
detected faces. They use deep convolutional neural networks
(DCNN) to map a facial image to a vector. The most used model is
FaceNet, which was introduced in Section 2.3. FaceNet predicts
features that are an array of 512 vector representations. The model
is a Deep Neural Network (DNN) trained through a triplet loss
function that influences facial embeddings for the same subject to
have smaller distances and different subjects to have larger dis-
tances (Schroff et al., 2015). In this research, the cosine similarity is
used to calculate with a given threshold, if the facial embedding
arrays belong to the same identity in a given multidimensional
space. Equation (1) is the cosine similarity between face a and face
b, where the value of n is 512.

cosða;bÞ¼ ab
kakjjbjj ¼

Pn
i¼1aibiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðaiÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðbiÞ2
q (1)

Indeed, the cosine similarity formula is the standard scalar
product between both 512-dimensional vectors representing
respectively face a and face b. As vector components cannot be
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Fig. 1. ‘‘Fame span’’: years between earliest and latest photos, per celebrity in the IMBD-WIKI 500k.
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negative, the angle between those vectors is between 0 (when for
each index at least one of the corresponding components in vector
a or in vector b is equal to 0) and 90� (when both vectors are the
same or proportional). In other words, the more parallel they are,
the higher the cosine similarity is.
3.2. Data augmentation

Data augmentation is managed by the Augmentor machine
learning python library (Bloice et al., 2019). Augmentor aids the
image augmentation and artificial generation of data for machine
learning use cases. It uses a stochastic approach using building
blocks that enable operations to be pieced together in a pipeline.
The data augmentation techniques used are both geometric and
photometric transformations; horizontal flip, rotation, random
zoom, random distortion, random colour, random contrast, random
brightness and random erasing were applied. The visual effects of
the several data augmentation techniques can be seen depicted in
Fig. 2.

The cosine similarity between the original image and the
augmented image was computed with Equation (1). As a reference,
the vectors from Fig. 2 were calculated and the cosine similarity
was analysed. The results can be seen depicted in Table 1. If the
cosine similarity is close to 1, the augmented facial vector hasn't
suffered much changes and would resemble the original image.
Therefore, a more aggressive augmentation technique would be
required. According to the results in the table, it can be observed
that FaceNet is robust against occlusions. Therefore, the random
erasure data augmentation technique should be replaced by
another augmentation method.

After the analysis, image augmentationwas selected accordingly
to a defined threshold of 0.6 emeaning that the euclidean distance
between the facial vectors predicted from the images and aug-
mentations were slightly far from each other. However, the
augmented dataset was only used for the training set as discussed
4

in Section 3.3.3. These techniques were performed in an offline
manner. Thus, creating physical images saved to the local disk.

3.3. Proposed facial age dataset

It is essential to gather enough data for training and testing.
Moreover, the size of the dataset required is dictated by both the
complexityof theproblemthat is trying tobesolvedand thequalityof
the images. Both the size of the training data and its quality are
influencing factors in the success of the model (Wani et al., 2020).
Furthermore, a specific rule that outputs the amount of training and
testing data required has not been developed; nonetheless, the best
practices are to evaluate datasets from previous research on age
estimation such as the work developed by Rothe et al. (2018) and
Anda et al., (2018, 2020a) .

Faces accurately labelled with age and gender are significantly
scarce, especially for underage subjects. Moreover, online and off-
line facial age estimators are challenged by images that belong to
the lower age range bracket (Anda et al., 2018). To tackle the lack of
underage images, two techniques were employed. Firstly, an un-
derage age estimation dataset was selected and an accurately
labelled facial vector dataset was integrated. The proposed facial
age dataset is a merge between the underage group range per-
taining to VisAGe (as described in Section 3.3.1) and Selfie-FV (as
described in Section 3.3.2). The counts per age distribution of
VisAGe, Selfie-FV and a combination of both can be seen in Fig. 3.
Secondly, the relevant data augmentation techniques discussed in
Section 3.2 were applied only to the training data set.

3.3.1. VisAGe
VisAGe is a facial single image dataset composed of mainly

underage subjects. The dataset comprises of over 21k images
accurately labelled by age and gender. The distribution by gender
can be seen in Fig. 4. In the distribution graph, it can be seen that
there is an exponential decay of amount of images for both male



Fig. 2. Facial Image Augmentation Techniques: Original image taken from FG-NET Aging Database (Wallhoff, 2006).
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and female subjects as the age increases. The dataset has been used
in (Anda et al., 2020a) and (Anda et al., 2020b). In the former study,
the authors created a deep learning underage model using a con-
tour Dlib artistic approach for pre-processing. This approach pre-
dicts additional landmarks pertaining to the hairlines, which
enables the facial cropping technique to capture important age
related data such as wrinkles on the forehead. On the latter study,
VisAGe is used for the evaluation of the influence that certain hu-
man bio-metric factors, facial expressions, and image quality have
on the outcome of automated age estimation.
5

3.3.2. Selfie-FV
Selfie-FV is a dataset of facial vectors derived from unique face

images of female subjects between 8 and 38 years old. The size of the
dataset also exceeds 21k subjects and the data is shared in two pickle
files: one for training and the other for testing (no-one appears in
both the training and test sets). The files were created with a 80/20
split and contain the pickled Pandas Dataframe objects with a unique
identifier for the image, the image number, the image filename, the
accurate age ground-truth and the facial embedding. The dataset is
available on Github: https://github.com/EdwardDixon/selfie-fv/. The
age distribution can be seen depicted in Fig. 5. It can be observed that

https://github.com/EdwardDixon/selfie-fv/


Table 1
Cosine similarity between original image and augmented images using the
Augmentor library.

Augmentation Cosine Similarity Settings

Flip 0.8599 Horizontal
Brightness 0.6845 Factor: 2
Rotation 0.6656 Angle: 25
Random Zoom 0.7856 Factor: 2
Random Distortion 0.8728 Grid width: 10

Grid height: 10
Magnitude: 8

Random Colour 0.5609 Factor: 2
Random Contrast 0.3341 Factor: 5
Random Erasure 0.9837 Rectangle: 0.2
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while the amount of images increases from age 8 onwards, a sudden
peak occurs close to the 15 year-old mark. These images are in the
age range of interest to develop an underage age estimation model.

The number of underage subjects used for this research is 7419
that belong to the age group of 8e18 year-olds. The contribution of
these images for the combined dataset can be seen in Fig. 3.
Table 2
Experiment D1: Statistics of MAE in training/validation/test (fixed lr of 1e� 4 for ADAGR

Fig. 3. Histogram of age count distributio

6

3.3.3. Test/validation and training dataset
A test dataset is considered optional but paramount to evaluate

the final performance of the model fit on the training dataset. It is
noticeable in Fig. 3 that there is a decrease in the amount of images
in the 6 to 8 and 11 to 13 bins. Nevertheless, an unbiased balanced
testing/validation dataset was obtained with 500 images per class,
leading to a non-augmented dataset of 9000 images that can be
used both for validation and testing or simply for validation. Test-
time data augmentation has been proven to reduce appearance
variations and improve face representations (Masi et al., 2019).
However, it is not considered for this research but could be a po-
tential for future work.

A validation dataset is used to automatically select the best
classifier during the training. Stratified Shuffle Split (Pedregosa
et al., 2011) was applied to divide the dataset in validation and
test where the test dataset was 50% of the validation set. The
shuffling technique applies stratified randomised folds e made by
preserving the percentage of samples for each class.

The training dataset was formed with the remaining images of
the merged dataset and the augmented images were included. An
augmented dataset of 5000 images per age was created (1e18 year-
olds). A total of 90k images were gathered. A separate JSON file for
AD, ADAM & SGD; and 1e� 5 for SWA).

n: VisAGe, Selfie-FV and combined.



Fig. 4. Distribution by age and gender - VisAGe.

Fig. 5. Distribution of female subjects by age - Selfie-FV (Dixon, 2020).
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the training dataset and the test/validation dataset was created. The
file contains a unique identifier for each image as a key and its
corresponding facial vector array.

3.4. Facial image pre-processing

The images for the selected datasets have already been curated
and are predominately frontal face photographs of a single subject.
Exposure, occlusion, noise and emotion are influencing factors on
the accuracy of underage facial age estimation (Anda et al., 2020b).
As a result, images have been discarded according to the level of
these factors, thus decreasing the problem to a smaller one.

Face detection is usually needed for age estimation; while
reducing the number of pixels to be evaluated, unwanted back-
ground and noise is also addressed. The Dlib library (King, 2009) is
used to detect faces. When no face is detected, the CNN version of
7

Dlib is executed. This approach lessens the processing time and
increases the face recognition hits. Finally, once the face has been
recognised, it is cropped to the detected face rectangle and resized
to a size of 224 x 224 pixels.

3.5. Neural network

Having the face vectors calculated previously, the inputs rather
than being pixels, are float values that can be processed with a much
simpler neural network. A simple 4-layer neural network with 512,
256,128, 1 units at each layer was constructed as shown in Fig. 6. For
every hidden layer, a Rectified Linear Unit (ReLU) activation function
was used. The input layer is not considered a layer of neurons, but
rather the entry of the facial embeddings of size 512. The first hidden
layer consists of 512 neurons, followed by the next layer which
consists of 256 neurons and the 3rd layer is of size 128 and will
generate the final results. The last layer consists of a single output
neuron as an age regressor. ReLU is one of the most commonly used
activation functions in neural networks. It relies on a simple calcu-
lation that returns the input if the value is greater than 0e otherwise
it returns 0. The function can be seen in Equation (2).

f ðxÞ¼maxð0; xÞ (2)

3.5.1. Regression versus classification
In our daily life, age is treated as a discrete variable, except

among the very young e a five and a half year-old will not be de-
nied their half year. Ages are binned more coarsely as we age, e.g.,
young, middle-aged, old, and much previous work has treated the
age estimation as a classification problem, with samples assigned to
broad age buckets. In the extreme, it is binarised, i.e., minor or
adult? When a more accurate age estimate is desirable, and



Fig. 6. Proposed neural network: for every hidden layer a ReLU activation is used.
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accurate ground-truth is available, we can instead treat age as a
continuous variable and make age estimation into a regression
problem. Regression structures are used to estimate a value
(continuous inputs) instead of a fixed class, leading to an infinite set
of possible outcomes (Boll�e et al., 2020).

Whether modelled as regression or classification, data is the
limiting factor, as with all machine learning problems. Age esti-
mation has been addressed in the past with several machine
learning regression techniques; predominantly Support Vector
Regression (SVR), Multilayer Neural Networks (MNNs), Random
Forests (RF) and Canonical Correlation Analysis (CCA) (Fern�andez
et al., 2015). Conversely, commonly used classification algorithms
such as k-NN, multilevel perceptron (MLP), AdaBoost and Support
Vector Machine (SVM) have been studied to perform accurate age
prediction and grouping (Liao et al., 2018).

The difficulty with using fine bin sizes, i.e., 1 year wide, while
also taking a classification approach is that the model will score the
same loss for being wrong by 1 year as it would for being wrong by
20 years. With regression, a large error, e.g., 20 years, can induce a
larger weight update than a small one, e.g., 1 year. The difference
would matter less if a binary classifier was trained, but for samples
close to the decision boundary it would still matter. Therefore, for
this research, based on data with accurate age values, a regression
approach has been chosen. Hence, the last output layer of our 4-
layered model contains a single neuron that is known as the age
regressor.
3.5.2. Optimisation
Optimisation is one of the main components of machine

learning. Gradient descent is an optimisation technique used to find
the minimum of a function. It is regularly used in deep learning
models to update the weights of a neural network. The following
gradient-descent-based optimisation algorithms have been used in
our study to lessen the error rates:

� Adaptive Moment Estimation (ADAM) (Kingma and Ba, 2014)
� Adaptive Gradient Algorithm (ADAGRAD) (Duchi et al., 2011)
� Stochastic Gradient Descent (SGD) (Bottou, 2010)
� Stochastic Weight Averaging (SWA) (Izmailov et al., 2018)

ADAM and SGD are commonly used to optimise deep neural
networks and are widely used in age estimation. For our research,
8

we explore the use of several gradient-based optimisers and focus
specifically on the novel SWA. SWA is a procedure that enhances
generalisation in deep learning models over SGD at no additional
cost. Izmailov et al. proved that the SWA procedure is able to find
much flatter solutions than SGD and the solutions are wider than
the optima found by SGD (Izmailov et al., 2018). The authors also
notice an improvement in the test accuracy versus SGD training on
several state-of-the-art residual networks. It also has slightly worse
train loss, but better test error.
3.6. Proposed solution

The mixed dataset discussed in Section 3.3 was used. All faces in
the images were detected and cropped, as described in Section 3.4,
and the facial vectors calculated. Images for training were gener-
ated with the relevant data augmentation techniques, as explained
in Section 2.4, to a total of 90k (5k per class, 18 classes in total), a
stratified shuffle split was applied to the test dataset to divide it into
2 equal sub-datasets. Both the validation and testing dataset
accounted to 4500 images each.

A 4-layered neural network was selected with 512, 256, 128 and
1 units per layer respectively. Each hidden layer used a ReLU acti-
vation function. The input to the network was the array of 512 facial
vectors and the output an age regressor. The optimisation algo-
rithms chosen were ADAM, ADAGRAD, SGD and SWA. Two sets of
20 experiments each were performed with the aid of Neptune, a
light-weight management tool that keeps track of machine
learning experiments (neptune., 2020). The first set of experiments,
D1, correspond to a initial fixed learning rate of 1e� 4 for ADAM,
ADAGRAD and SGD, and 1e� 5 for SWA. Conversely, the second set
of 20 experiments (E1) correspond to the use of a tool as guidance
for choosing an optimal initial lr. This tool is based on cyclic
learning rates proposed by Smith (2017) in 2017.

The choice of the loss function was the simplest and most
common Mean Squared Error (MSE). The main metrics used to
measure the loss wereMSE andMAE. TheMAE is the absolutemean
average difference between the predicted age and the real age.
Lastly, the number of epochs selected was 100, but early stopping
was implemented. This is helpful to reduce the learning rate as the
number of training epochs increases and therefore, a learning rate
scheduler was applied.
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4. Results

4.1. Evaluation of the experiments

The set of experiments D1 and E1 have been logged entirely
using Neptune. Up to 10 experiments can be compared simulta-
neously and there is an API feature that allows the integration with
python through the neptune.sessions library. To ensure full repro-
ducibility from run to run, pytorch-lightning supports deterministic
experiments. Additionally, the seeds for pseudo-random generators
have been logged in Neptune and the experiment results are
duplicable and openly available at https://ui.neptune.ai/4nd4/
Vec2UAge/.

4.2. D1 - evaluation of the MAE distribution with a fixed initial
learning rate

The effects of the fixed initial values of lr (1e� 4 for ADAGRAD,
ADAM and SGD, and 1e� 5 for SWA) can be seen in Fig. 7. ADAGRAD
yielded theworst performing results for training, validation and test.
Nevertheless, the consistency of values of the validation and test loss
is denoted by a spread of 0.05 and visible in both the figure and in
Table 2. It can be seen that the ADAM algorithm surpassed the per-
formance of the other optimisers for training and testing. Moreover,
the datawas the least sparse for all the losses. The validation and test
MAE for SGD was consistent and the standard deviation was low.
Therefore, there was not a significant spread of data. It was a stable
optimiser that produced models as low as 2.51. Lastly, SWA although
not achieving the best performing training and validation values,
managed to achievemodels for validation as low as 2.43, and had the
best performing model and mean for testing.

Overall, the best performer for the experiment set D1 was the
ADAM optimiser approach with a fixed initial lr of 1e� 4. The
outcome produced models in test with a mean of 2.49 and MAEs as
low as 2.46. The criteria to pick the best optimiser was to sum the
Fig. 7. MAE distribution per optimiser for train
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count of minimum values per statistic per loss.

4.3. E1 - evaluation of the MAE distribution with an initial lr finder

The effects of the usage of the learning rate finder to obtain the
initial learning rate can be seen in Fig. 8. It is observed that the
validation values are consistently clustered except for the ones seen
in the ADAM algorithm. ADAGRAD had low sparse data throughout
training, validation and test losses. Conversely, the performance
wasn't as good as the rest of the optimisers (ADAM, SGD, SWA). It is
noticeable that ADAM had the highest standard deviation figures
with 1.23, 0.93 and 0.92 in training, validation and testing,
respectively, as can be seen in Table 3. Next, SGD performed better
than the rest of the optimisers followed by SWA. The winning re-
sults were consistent for all the statistical evaluations besides the
standard deviation for training, which was slightly inferior than
SWA. Experiment E1 produced models with MAEs as low as 2.36.
The same criteria used in Section 4.2 to pick the best optimisers was
applied.

4.4. Details of winning optimisation approaches

The best performer in D1 is the experiment VEC-403 with a
validation MAE of 2.48 and a test MAE of 2.39. The next best
performer is VEC-394with values of 2.51 and 2.42 for validation and
test losses respectively. The numbers of each experiment with the
corresponding seed and losses can be seen in Table 4.

The best performer in E1 is the experiment VEC-295 with a
validation MAE of 2.44 and a test MAE of 2.36. The next best
performer is VEC-286 with values of 2.46 and 2.36 for validation
and test respectively. Both leading experiments had almost the
same outcome; the numbers of each experiment with the corre-
sponding seed, lr and losses can be seen in Table 5.

The winning model (experiment VEC-295) was an outcome of a
SGD optimisation approach with an initial optimal learning rate of
ing/validation/test (using a fixed initial lr).

https://ui.neptune.ai/4nd4/Vec2UAge/
https://ui.neptune.ai/4nd4/Vec2UAge/


Fig. 8. Mean absolute error distribution per optimiser for training/validation/test (using lr finder).

Table 3
Experiment E1: Statistics of MAE in training/validation/test (lr finder executed).
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0.0302. The model produced a MAE in validation and test of 2.46
and 2.36 respectively. The performance per age for the top 3 best
performing experiments D1 and E1 can be seen in Fig. 9. The mean
absolute difference (MAD) is the average absolute difference of two
random variables X and Y independently and identically distrib-
uted. The formula is shown in Equation (3). This measure of sta-
tistical dispersion was used to calculate the performance per age.
The winning model had a MAD performance range between 1.84
and 4.47. The performance was at its best for 2, 12 and 14 year-old
subjects. The trend of the other experiments (VEC-295, VEC-286 &
VEC-311) are similar. As can be seen in Fig. 9b, they each perform
well for 12-year-old subjects and the performance starts decreasing
from 14 year-olds onwards in an exponential manner. In a similar
way, the top 3 best performers for experiment D1 have a behaviour
inline with experiment E1 with a good performance in 12 and 14
year-old subjects while having an exponential decrease in perfor-
mance from 14 year-olds onwards, as can be seen in Fig. 9a.

MAD¼ E½jX�Y j� (3)
10
4.5. Running times and convergence

The runtime is associated to convergence due to the imple-
mentation of early stopping for each experiment. Once the loss
function ceased to improve with a patience of 10 epochs, the
training was stopped. Each optimiser was automatically logged to
Neptune and further evaluated for both experiment D1 and E1. The
hardware used has a CPU processor of 2.8 GHz (Quad-Core Intel
Core i7), memory of 16 GB 1600 Mhz DDR3 and an Intel Iris Pro
1536 graphics card.

The SWAoptimiser was able to converge the fastest compared to
the rest of the algorithms in experiment D1 with a mean value of
approximately 7 min. Similar performance occurred in experiment
E1 for which its mean running time was inline with that of SGD
with an approximate value of 13 min. Despite achieving a low
runtime average in E1, the SGD algorithm performed the slowest of
all algorithms executed for experiment D1. This indicates that SGD
struggles with a fixed initial lr of 1e� 4.

It is clear that in D1 the run time average for the different al-
gorithms varied greatly from each other particularly when
compared to its E1 counterpart, which has significantly less
dispersion between the mean runtime of the algorithms as shown



Table 4
Experiment D1: Validation MAE with SWA optimiser and fixed lr of 1e� 5. The top 3 performers are highlighted.
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in Fig.10. This suggests that E1 has amore controlled runtime out of
the two experiments. Moreover, with the exception of ADAM, the
rest of the algorithms were also found to perform faster in E1. These
outcomes were due to the automatic learning rate finder (Smith,
2017), which was made available in experiment E1.

5. Discussion

The results presented in Section 4 describe a novel approach to
obtain robust indicators of the performance of a model through
distributions. The advantage of having several models that
compete against each other, allows us to understand the tendency
of the losses per optimisers and random initialisations. Evenwhen
all the hyper-parameters are held constant, there is a high vari-
ability in how well models generalise. By reducing the age esti-
mation inputs to a vector of 512 (representing facial embeddings),
11
tens to hundreds of experiments are able to be executed in a short
time, enabling the evaluation of several approaches. Finding a set
of experiments with means of 2.5 and below, is very encouraging.
This means that the results obtained were not manipulated or
obtained incidentally, but were consistent. It was observed that
similar results were in line per optimiser and stable to the initial
condition. Alone, the MAE of 2.5 for testing surpasses the state-of-
the-art age estimation models. The best model obtained has a
MAE in test of 2.36, which outperforms other age prediction
models.

Prior to obtaining this performance, several data pre-processing,
augmentation techniques, optimiser algorithms and learning rate
initialisers were evaluated. All the correctly amalgamated methods
produced promising resultse particularly those engendered by the
SWA optimiser with a non-fixed initial learning approach. Never-
theless, it must be considered that these models are only for



Table 5
Experiment E1: Validation MAE with SGD optimiser and lr finder (Smith, 2017). The top 3 performers are highlighted.
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underage single frontal-faced images, and will only work well for
such age ranges and type of imagese according to the no-free-lunch
theorem that states that a single model cannot suit all problems. It is
also observed that the models perform lower for 17 and 18 year-old
subjects. This may be due to the similarity between these two ages,
creating an encouraging topic to addresswith facial embeddings for
future work. It is also worth mentioning that overall, the use of a
cyclic-based learning rate finder not only improved the perfor-
mance but decreased the running times of the experiments. Finally,
the use of the SWA optimiser yielded optimal results where the
convergence timewas significantly faster than the other algorithms
evaluated.
6. Conclusion and future work

6.1. Conclusions

Facial age estimation is still a challenging topic due to several
factors including the environment, habits, ethnicity, diet, etc. Un-
derage age estimation for digital forensics is continuously being
studied and the performance has been improving, entitling digital
forensic practitioners to use tools and techniques that include
12
computational intelligence to detect and analyse evidence e partic-
ularly deep learning. Currentmodels usually attempt to tackle several
challenging factors thataffect theageestimationperformance suchas
facial occlusion, non-frontal faces, brightness, contrast, quality, etc. In
our approach, a simpler challenge is addressed and a better perfor-
mance is achieved. A distribution for the evaluation model metric is
proposed, allowing researchers to chose a model with more confi-
dence. The exploration of optimal learning rates was key in the in-
fluenceofhighperformingunderageageestimationmodels; theSWA
optimiser with the cyclic-learning-rate-based approach is a prom-
ising setting that yields higher accuracy for underage age estimation
than other optimisation approaches. Another factor that aided the
performance was the quality of the dataset. Data augmentation
techniques have beenproven in the past to increase performance but
the correct transformation must be chosen e specifically with facial
embeddings. The calculation of the facial vectors enabled the use of
simplerneural networks.And theexperimentsweremanaged swiftly
without the use of a GPU. Collaborative tools were used to record and
manage all the experiments. Tracking and visualisingmetrics such as
loss and accuracy are paramount for researchers not only in digital
forensics but in other areas.



Fig. 9. Performance per age for the top 3 best performers.
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Fig. 10. Average runtime per optimisation algorithms for experiments D1 and E1.
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6.2. Future work

While using a fixed encoder (FaceNet) to produce facial em-
beddings worked well, fine-tuning the encoder by back-
propagating the loss from the age estimation module with a low
learning rate should produce a more optimal representation.

Trained with a regression loss, the models outlined in this work
produce a point estimate of the subject's age. However, the value of
such an estimate to a digital forensics end-user would be increased
if the model instead produced a well-conditioned distribution
(mean and variance), for example by applying the methods
described in SWAG (Maddox et al., 2019).

Finally, the use of a hyperparameter optimisation framework for
machine learning such as Optuna (Akiba et al., 2019) would aid the
experiments to find improved performance for underage facial age
estimation.
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